Carbon Fiber

Hits: UpdateTime:2012-4-5 16:49:24

Carbon fiber, alternatively graphite fiber, carbon graphite or CF, is a material consisting of extremely thin fibers about 0.005–0.010 mm in diameter and composed mostly of carbon atoms. The carbon atoms are bonded together in microscopic crystals that are more or less aligned parallel to the long axis of the fiber. The crystal alignment makes the fiber very strong for its size. Several thousand carbon fibers are twisted together to form a yarn, which may be used by itself or woven into a fabric. Carbon fiber has many different weave patterns and can be combined with a plastic resin and wound or molded to form composite materials such as carbon fiber reinforced plastic (also referenced as carbon fiber) to provide a high strength-to-weight ratio material. The density of carbon fiber is also considerably lower than the density of steel, making it ideal for applications requiring low weight. The properties of carbon fiber such as high tensile strength, low weight, and low thermal expansion make it very popular in aerospace, civil engineering, military, and motorsports, along with other competition sports. However, it is relatively expensive when compared to similar materials such as fiberglass or plastic. Carbon fiber is very strong when stretched or bent, but weak when compressed or exposed to high shock (e.g. a carbon fiber bar is extremely difficult to bend, but will crack easily if hit with a hammer).

History of carbon fiber
In 1958, Dr. Roger Bacon created high-performance carbon fibers at the Union Carbide Parma Technical Center, located outside of Cleveland, Ohio.[1] Those fibers were manufactured by heating strands of rayon until they carbonized. This process proved to be inefficient, as the resulting fibers contained only about 20% carbon and had low strength and stiffness properties. In the early 1960s, a process was developed by Dr. Akio Shindo at Agency of Industrial Science and Technology of Japan, with using polyacrylonitrile (PAN) as a raw material. This had produced a carbon fiber that contained about 55% carbon.
The high potential strength of carbon fiber was realized in 1963 in a process developed at the Royal Aircraft Establishment at Farnborough, Hampshire. The process was patented by the UK Ministry of Defence then licensed by the NRDC to three British companies: Rolls-Royce, already making carbon fiber, Morganite and Courtaulds. They were able to establish industrial carbon fiber production facilities within a few years, and Rolls-Royce took advantage of the new material's properties to break into the American market with its RB-211 aero-engine.
Even then, though, there was public concern over the ability of British industry to make the best of this breakthrough. In 1969 a House of Commons select committee inquiry into carbon fiber prophetically asked: "How then is the nation to reap the maximum benefit without it becoming yet another British invention to be exploited more successfully overseas?" Ultimately, this concern was justified. One by one the licensees pulled out of carbon-fiber manufacture. Rolls-Royce's interest was in state-of-the-art aero-engine applications. Its own production process was to enable it to be leader in the use of carbon-fiber reinforced plastics. In-house production would typically cease once reliable commercial sources became available.
Unfortunately, Rolls-Royce pushed the state-of-the-art too far, too quickly, in using carbon fiber in the engine's compressor blades, which proved vulnerable to damage from bird impact. What seemed a great British technological triumph in 1968 quickly became a disaster as Rolls-Royce's ambitious schedule for the RB-211 was endangered. Indeed, Rolls-Royce's problems became so great that the company was eventually nationalized by Edward Heath's Conservative government in 1971 and the carbon-fiber production plant sold off to form Bristol Composites.
Given the limited market for a very expensive product of variable quality, Morganite also decided that carbon-fiber production was peripheral to its core business, leaving Courtaulds as the only big UK manufacturer.
The company continued making carbon fiber, developing two main markets: aerospace and sports equipment. The speed of production and the quality of the product were improved.
Continuing collaboration with the staff at Farnborough proved helpful in the quest for higher quality, but, ironically, Courtaulds's big advantage as manufacturer of the "Courtelle" precursor now became a weakness. Low cost and ready availability were potential advantages, but the water-based inorganic process used to produce Courtelle made it susceptible to impurities that did not affect the organic process used by other carbon-fiber manufacturers.
Nevertheless, during the 1980s Courtaulds continued to be a major supplier of carbon fiber for the sports-goodsmarket, with Mitsubishi its main customer. But a move to expand, including building a production plant in California, turned out badly. The investment did not generate the anticipated returns, leading to a decision to pull out of the area. Courtaulds ceased carbon-fiber production in 1991, though ironically the one surviving UK carbon-fiber manufacturer continued to thrive making fiber based on Courtaulds's precursor. Inverness-based RK Carbon Fibres Ltd has concentrated on producing carbon fiber for industrial applications, and thus does not need to compete at the quality levels reached by overseas manufacturers.
During the 1970s, experimental work to find alternative raw materials led to the introduction of carbon fibers made from a petroleum pitch derived from oil processing. These fibers contained about 85% carbon and had excellent flexural strength.

Carbon Fiber Structure and properties
Carbon fibers are the closest to asbestos in a number of properties. Each carbon filament thread is a bundle of many thousand carbon filaments. A single such filament is a thin tube with a diameter of 5–8 micrometers and consists almost exclusively of carbon. The earliest generation of carbon fibers (i.e., T300, and AS4) had diameters of 7-8 micrometers. Later fibers (i.e., IM6) have diameters that are approximately 5 micrometers.
The atomic structure of carbon fiber is similar to that of graphite, consisting of sheets of carbon atoms (graphene sheets) arranged in a regular hexagonal pattern. The difference lies in the way these sheets interlock. Graphite is a crystalline material in which the sheets are stacked parallel to one another in regular fashion. The intermolecular forces between the sheets are relatively weak Van der Waals forces, giving graphite its soft and brittle characteristics. Depending upon the precursor to make the fiber, carbon fiber may be turbostratic or graphitic, or have a hybrid structure with both graphitic and turbostratic parts present. In turbostratic carbon fiber the sheets of carbon atoms are haphazardly folded, or crumpled, together. Carbon fibers derived from Polyacrylonitrile (PAN) are turbostratic, whereas carbon fibers derived from mesophase pitch are graphitic after heat treatment at temperatures exceeding 2200 C. Turbostratic carbon fibers tend to have high tensile strength, whereas heat-treated mesophase-pitch-derived carbon fibers have high Young's modulus and high thermal conductivity.

Carbon Fiber Applications
Carbon fiber is most notably used to reinforce composite materials, particularly the class of materials known as Carbon fiber or graphite reinforced polymers. Non-polymer materials can also be used as the matrix for carbon fibers. Due to the formation of metal carbides and corrosion considerations, carbon has seen limited success in metal matrix composite applications. Reinforced carbon-carbon (RCC) consists of carbon fiber-reinforced graphite, and is used structurally in high-temperature applications. The fiber also finds use in filtration of high-temperature gasses, as an electrode with high surface area and impeccable corrosion resistance, and as an anti-static component. Molding a thin layer of carbon fibers significantly improves fire resistance of polymers or thermoset composites because a dense, compact layer of carbon fibers efficiently reflects heat.

Copyright © 2012 by toptek · All Rights reserved · E-Mail: zd@toptekcarbonfiber.com

Particularly recommended:carbon fiber tubes-fiber glass tubes-epoxy tubes-3Kcarbon fiber tube-ETC car stopper-carbon fiber arrow shafts